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We consider a common variant of the vehicle routing
problem in which a vehicle fleet delivers products stored
at a central depot to satisfy customer orders. Each vehicle
has a fixed capacity, and each order uses a fixed portion
of vehicle capacity. The routing decision involves deter-
mining which of the demands will be satisfied by each vehicle
and what route each vehicle will follow in servicing its
assigned demand in crder to minimize total delivery cost.

We present a heuristic for this problem in which an
assignment of customers to vehicles is obtained by solving a
generalized assignment problem with an objective function
that approximates deiivery cost. This heuristic has many
attractive features. It has outperformed the best existing
heuristics on a sample of standard test problems. It will
always find a feasible solution if one exists, something no
other existing heuristic can guarantee. It can be easily
adapted tc accommodate many additional problem complexities.
By parametrically varying the number of vehicles in the fleet,
our method can be used to optimally solve the problem of finding
the minimum size fleet that can feasibly service the specified

demand.




1. Intrcduction

Vehicle routing is a challenging logistics management
preblem. There are many variations of the problem ranging

from school bus routing to the dispatching of delivery trucks

for consumer Tcods. In all cases, the basic components of the
problem are a fleet of vehicles with fixed capabilities (capaci-
ty, speed, etc.) and a set of demands for transporting certain

objects (school children, consumer goods, etc.) between speci-

fied pickup and delivery points. The routing decision involves

determining which of the demands will be satisfied by each

i

vehicle and what route each vehicle will follow in servicing

its assigned demand. These decisions should be made to minimize
the cost of operating the vehicle fleet. Principal cost

items include fuel, personnel, and vehicle depreciation.

These costs are usually large and highly sensitive to how
routing decisions are made. Vehicle routes must also satisfy

a variety of constraints arising from factors such as fixed
vehicle capacity and union regulations on driver work schedules.

We consider a common variant of the vehicle routing problem.

A vehicle fleet delivers products stored at a central depot

to satisfy customer orders that cover some period of time

into the future. The customers specify their orders prior to

the start of each period, and the vehicles must then be scheduled
to deliver the period's orders. Each vehicle has a fixed
capacity, and each order uses a fixed portion of vehicle

capacity. Examples include scheduling the deliveries of a

large department store and of a processed food distributer.




To provide a precise statement of this problem we intro-
duce notation and specify an integer programming formulation.
Constants

K 2 number of vehicles

n number of customers to which a delivery must be
made. Customers are indexed from 1 to n and index 0

denotes the central depot.

b, = capacity {(weight or volume) of vehicle k.

k
a; = size of the delivery to customer i.
cij = cost of direct travel from customer i to customer j.
Variables
1, if the order from customer i is delivered by
Yik = vehicle k
0, otherwise

1, if vehicle k travels directly from customer i
xljk = to customer j
0, otherwise

An integer programming formulation of the problem of
routing to minimize cost subject to vehicle capacity con-

straints is given below. We denote this problem by (VRP).




Formulation of the Vehicle Routing Problem (VRP)

min i?k i3 xijk (1)
s't' i): aiyik -<_ bk ’ k = l,ono’K (2)
. K, i=0
Yir = (3)
x 1k 1, i=1,...n
Yix = 0 or 1, i=20,...n (4)
k-_- l,"o'Kt
——
$ X... = Yo j=0,...,n (5)
; Tijk ik
§ xijk = Yigr i=20,...,n (6)
| Sk =1,...,K
I x5 < Isl-2, s g {1,...,n} (7)
ijesxs -3 < |s| < n-1
Xiik =0orl, i=20,...,n (8)
j=0,....,n

-

Two well-known combinatorial optimization problems are

embedded within this formulaticon. Constraints (2) - (4) are
the constraints of a generalized assignment problem and insure
that each route begins and ends at the depot (customer 0), that
every customer is serviced by some vehicle, and that the load
agssigned to 2

vehicle is within its capacity. If the Yi are

fixed to satisfy (2) - (4), then for given k, constraints
(5) - (8) define a traveling salesman problem over the customers

assigned to vehicle k.




Literally person-centuries have been devoted to developing
a sophisticated solution theory for the traveling salesman and
generalized assignment models embedded within (VRP). By con-
trast, existing computer-based methods for (VRP) are relatively
simple and use little of this theory. Because of the complexity
of (VRP), all previously proposed practical methods have been
heuristics that find an approximately optimal solution.
Existing heuristic methods are reviewed in section 2 and shown
| to suffer from a serious limitation. Vehicle capacity constraints
do not play a central role in the decision rules of these methods
so that tightly constrained problems can easily terminate with
a poor or infeasible solution. This difficulty has been recog-
nized by several researchers and practitioners as a serious
barrier in the use of these methods (Christofides [3], Krolak and Nelson
(121, Rau [17], Shuster and Schur {20]).

We present here a new heuristic for (VRP) in which an
assignment of customers to vehicles is obtained by solving a
generalized assignment problem with constraints (2) - (4) and
an objective function that approximates the cost of the
traveling salesman problem tours that must be made for each
vehicle to service its assigned customers. Once this assign-~
ment has been made, a complete solution is obtained by applying
any traveling salesman problem heuristic or aoptimizing algorithm
to obtain the delivery sequence for the customers assigned to

each vehicle.

A detailed description of this generalized assignment

heuristic is given in section 3. 1In section 4 we present the

o j
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results of computational testing on a sample oi standard test

problem taken from the literature. In these tests, the new

heuristic proposed here outperformed the best existing vehicle

routing heuristics.

In addition to this outstanding computational performance,

our heuristic has several attractive attributes. First,

because the essential feasibility constraints (2) and (3)

are included in the generalized assignment problem, the

heuristic will always find a feasible solution if one exists.

Second, when the generalized assignment problem is solved, -

we are considering the impact of a customer assignment to a

vehicle on every other possible assignment in light of vehicle

capacity constraints. This avoids a problem faced by sequential

assignment or limited adjustment heuristics that can "paint

themselves into a corner"” by unknowingly making initial assign-

ments that eventually force very expensive assignments in order

to maintain feasibility. Third, the method can easily be

adapted to accommodate a number of important problem complexities,

including multiple depots, multiple time periods, the option of

not delivering to a customer at a penalty, constraints on the

time duration of a vehicle route, and multiple capacity con-

straints (e.g., weight and volume). Finally, by applying our method

a number of times for different values of K and (bl"°"bx)' it is
[ possible to determine the tradeoff between fleet size and the

operating costs included in objective (1) of (VRP). This

! kind of parametric analysis would be useful, for example, in
Lh evaluating vehicle acquisition decisions. Also, because our

method will always find a feasible solution if cne exists, it

——




is possible to use our method with parametric variation of X
to optimally determine the minimum fleet size that can feasibly

service a fixed set of demand requirements.




2. Review of Existing Methods

Past work on (VRP) has been concerned almost exclusively
with heuristics. The heuristics which have been developed for
(VRP) are largely modifications of traveling salesman problem
heuristics and are of four types.

i) tour building heuristics.

ii) tour improvement heuristics.
iii) two-phase methods.
iv) ircomplete optimization metheds.

In the first type a link between two customers is sequen-
tially added until all customers have been assigned to some route.
Every time a link is added, the vehicle capacity constraints are
checked for viclation. The choice of a link is motivated
by some measure of cost savings.

Tour improvement heuristics begin with a feasible vehicle
schedule. At every iteration some combination of links are
exchanged for another and a check is made to see if the
exchange is both feasible and reduces cost.

In the two-phase method, customers are first assigned to
vehicles without specifying the sequence in which they are to
be visited. In phase 2, routes are obtained for each vehicle
using a traveling salesman problem heuristic.

Incomplete optimization methcds apply some optimization algorithm,
such as branch and bound, and simply terminate prior to optimality.

The most often used tour building heuristic is the Clarke

and Wright method [S]. The Clarke and Wright method begins




with an infeasible solution in which every customer is supplied

individually by a separate vehicle. By combining any two
of the customers we would use only one of the two vehicles
and also reduce the solution cost. Recall that customer o
denotes the central depot. The cost of serving customers

i and j individually by two vehicles is c + C;54 + C

. .+ C.
oi io oj %50

while the cost of one vehicle visiting i and j sequentially
on the same route is cgy; + €44 + o Thus, combining i and j
results in a savings of

Si3 = 0 T Soj T Cij-
Clarke and Wright link the customers i and j with maximum iy
subject to the requirement that the combined route be feasible.
Customers i and j are now regarded as a single macro customer.
A vehicle may travel from city £ to the macro customers at a
cost of c,; and from the macro customer to % at a cost of Cyp-
With this convention, the route combining operation can be
aprlied repeatedly.

Savings are ordered froﬁ the greatest to the least, and this
list is scanned from the top to generate a sequence of partial
routes, each time checking for feasibility. In scanning the
list we can simultaneously form partial routes for all vehicles
or sequentially add customers to a given route until the
vehicle is loaded. The latter is called the sequential Clarke
and Wright method.

There have been many modifications to the basic Clarke and
Wright method. Gaskell (9] and Yellow [22] independently
introduced the concept of a modified savings given by Si = ecij
where § is a scalar parameter. By varying 8, one can place




greater or less emphasis on the cost of travel between two

rodes, depending on their position relative to the central
depot. This parameter can be altered and different solutions
obtained. The best of these is then chosen. Golden et al.
[11] have used computer science techniques to substantially
reduce the running time of Clarke and Wright.

The tour improvement heuristics are kased on t-- Lin
[13] and Lin-Kernighian [14] heuristic for the traveling sales-
man problem. Christofides and Eilon (2] and Russell [19]
have modified this heuristic for vehicle routing.

Two phase methods include those of Tyagi [21] , Gillett
and Miller [10], and Christofides et al. [4]. The methods
in [21] and'IIO] both use a modified Lin-Kernighan heuristic
in phase 2. 1In phase 1, both methods use the distance ketween
customers as cost. Tyagl assigns customers sequentially to
vehicles using a nearest neighber rule. Each customer assigned
to a vehicle is chosen to be closest to the customer last
assigned to that vehicle. ;

Gillett and Miller use a "sweep" algorithm for phase 1
in which the locatiocn of customers is represented in a polar
coordinate system with origin at the central depot. A custcmer
is chosen at random and the ray from the origin throuch the
custormesr is "swept" either clockwise or counter-clockwise.
Custcmers are assigned to a given vehicle as they are swept,
until the capacity constraint for that vehicle is reached.

Then a new vehicle is selected and the sweep continues, with

assignments now being made to the new vehicle.




The Christofides et al. [4] two phase method begins by

applying a minimal insertion cost heuristic for inserting

customers to emerging routes. At each step, the Lin-Kernighan
heuristic is applied to the customers that have been assigned to each
vehicle. In phase 2, a customer ik is designated in each of

the routes formed in phase 1. Beginning with the K routes

that join the depot to iy, k = 1,...,K, the remaining customers

are inserted using a rule based on the cost of inserting a

customer in alternative routes.

The only example of a heuristic based on incomplete

optimization of which we are aware is the tree-search method

reported in [4]. This i; essentially a branch and bound
algorithm turned into a heuristic by early termination.

We conclude this subsection with the observation that none
of the methods described here place much emphasis on the vehicle
capacity constraints. While these constraints are checked
for violation wherever possible, they have no other influence

en the choices that are made in forming a solution. For this

reason, existing heuristics can easily terminate with an
infeasible or bad solution if capacity constraints are

moderately tight.




3. A New Heuristic for (VRP)

-11-

The basic idea 0of our approach can be described in terms

of the following reformulaticon of (VRP) as a nonlinear general-

ized assignment problem.

min I £(y,)
k k

I 2a¥ix B v

L y:y =
K ik 1,

Yix = 0 or 1,

[1}
o

= l,-.

=0,..
1,.

.,n

.

-.,K

where f(y,) is the cost of an optimal traveling salesman

problem tour of the customer in N(yy) = {ily;, =

1}. The

functiecn f(yk) can be defined mathematically by

fly,) =min I ¢ii%..
k ijk 1313k
s.t. E xijk = ijr 3
§ ¥ijk = Yikr 1
E X. . < ,S,-l :S
ijesxs ik = ’
2
xijk =0orl, i
3

<1

0,...,n

c{l,...,n}

< |sl< n-1

(1"}

(2)

(3)

(4)

(")

(5")

(6')

(7")

(8")
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0f course, f(yk) is an extremely complicated function

and cannot even be written down for nontrivial problems.

Our heuristic is based on constructing a linear approximation

n
I dix Yik of f(yx) and solving (1'), (2), (3), (4) with

i=1
(1') replaced by
K n

LoD davik (1")
The solution of this linear generalized assignment problem
defines a feasible assignment of customers to vehicles.
We then determine a delivery sequence for the customers assigned
to each vehicle by applying any traveling salesman problem
heuristic or optimizing algorithm.

There are many plausible methods for constructing a

linear approximation of f(yk). We first describe a simple

method that was used to obtain the computational results

reported in the next section. Then we indicate some possible

variations.
We begin with a set of "seed" customers i,,...,iy that are
assigned to vehicle 1,...,K respectively. The coefficient

dix is then set to the cost of inserting customer i into the
route in which vehicle k travels from the depot directly to

customer ik and back. Specifically,

djx = minfcy; + G4, + io’ Coip eyt Ciol - [coik + ciko]'

Figure 1 shows this computation for an example that we created for
illustrative purposes. In this example n = 25, K = 7, and the ¢;

are given by the Euclidean distance between points.
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We have chosen customers 4, 7, 10, 13, 16, 20 and 24 as seed
customers. The figure shows the 7 seed routes and the compu-
tation of dj) for i = 23 and k the vehicle assigned to custcmer

24. The solution obtained by the generalized assignment

heuristic has cost 159.59 and is shown in figure 2. For

comparison, the Sweep solution which has a cost of 166.73 is shown

in figure 3. The Clarke and Wright solution had a cost of 164.03.
Seed customers can be selected either by an automatic

rule or by a scheduler who has responsibility for orerating

the computerized routing system and implementing its output.
There are many advantages to the latter approach. Usually
the scheduler has some "feel” for the problem and appreciates
the opportunity to make this experience known to the computer
system. There are many considerations he can use to select
seed customers. For example, customers often lie along radial
corridors corresponding to major thoroughfares, and the most
distant customers along these corridors are natural seed
customers. Customers for which a; > 1/2 bk can also be made
seed custcmers, since any pair of these cannot be on the same
route. If our heuristic is implemented on an interactive
computer system with graphics display, the scheduler can
experiment with different selections of seed customers and
immediately see the effect on cost and routing decisions.
This gives him a sense of involvement and control that is
crucial to a successful implementation.

To illustrate the possibilities for automatic selection

of seed customers, we will describe the rule we've used in
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Figure 2 Fisher-Jaikumar Generalized Assignment Solution (Z = 159.59)
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Figqure 4 Illustration of the Selection of Seed Points
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our computational experiments. This rule will be given for the

planar case (all customers are located at points in a olane

and ij is the Euclidean distance between points i andéd j)

with by = b for all k. It can be generalized to

other cases. We determine K seed points Wyreeo Wy in the

plane rather than K seed customers. These points are used

exactly like seed customers to initialize the heuristic.

To determine w;,...,Wg, the plane is partitioned into K cones

corresponding to the K vehicles. Then wy )

is located on the ray bisecting cone k.
To determine these cones, we first partition the plane

into n smaller cones, one for each customer.

The infinite half ray forming the boundary between two

customer cones is pesitioned to bisect the angle formed by

half rays through the two immediately adjacent customers.

Associate the weight a; with customer cone i and define

=y . Each vehicle cone is then formed from a conticuous

group of customer cones or fractions of customer ccnes.
The weight of the group is required to equal ab. A fraction
of a customer cone contributes the same fraction of its weight

to the total group weight. The point w
xth

% is located along the rav

bisecting the cone. The distance of wy from the origin is

fixed so that the weight included inside the arc through wy is .75ab.

This weight is defined to egual the sum of the a;

for all customers inside the arc
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plus a fraction of a,

i for the customer just outside the arc. This

fraction is KéE where A is the distance to the arc from
the customer just inside the arc and B is the distance to
the arc from the Customer just outside_the arc.

This process is illustrated in Figure 4 for an example
with K = 3 and bk = 30 for k = 1, 2, 3. The points in the
figure represent customers, and the numbers next to the voints

give the a The dashed lines define the customer cones, and

i.

the solid lines the vehicle cones.

In our current computef implementation, the traveling sales-
man problems for the customers assigned to each vehicle are solved
optimally using an algorithﬁ similar to the one reported in
Miliotis [15], [1l68]. We use Gomory's Method of Integer Forms
to solve formulation (1"), (5') ~ (8') with the Yik fixed.
Constraints in the set (7') are generated only as needed.

Our algorithm for the generalized assignment problem is
based on a Lagrangian relaxation in which the multipliers
are determined by a primitive ascent method of the type
described in Fisher [6]. This algorithm has outperformed
the very successful Ross and Soland (18] algorithm. A
detailed description is given in Fisher, Jaikumar and Van
Wassenhove [8].

We are currently experimenting with a number of possible
variations on the heuristic we have described here. These

include different seed customer selection rules, the use of

a modified insertion cost ala Gaskell [9] and Yellow [22], and
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schemes for iteratively adjusting the dik’ In this last
approach, we solve the generalized assignment problem several
times, adjusting the dik after each solution to better

approximate f(y,).

An optimizing algorithm can also be constructed by using
this iterative procedure with Benders decomposition [1].
Each time the generalized assignment problem is solveéd, a
lower linear support of f(yk) is constructed from the dual
variables of (1"), (5') - (8') and added to the generalized
assignment problem. To obtain dual variables, we relax
integrality on Xj4x ©OF impose this integrality with standard
integer piogramming cuts. A complete description of this

approach is given in Fisher and Jaikumar ([7].




4. Computational Results

Cemputational tests were perfcecrmed using 12 standard test
problems taken from the literature. Our method was ccompared
with four other heuristics:

(1) <Clarke and Wright [5]
(ii) Sweep [10]
(iii) Christofides, et al.tree search [4]
(iv) Christofides, et al.2 phase [4]
Summary characteristics of the 12 problems are given in
Table 1. In these problems, the bk were identical for all k.
The value in the column headed K* is the minimum number of

trucks that will admit a feasible solution. Specifically,

K*-1 n K*
K* satisfies z bk < I a; < Z bk' In a few cases, Clarke and
K=1 i=1 k=1

Wright required more than K* vehicles. Otherwise, all results are
with K =-K*. mThe last column gives an indication of the tight-
ness of the vehicle capacity constraints.

All tést problems were planar. That is, customers are
located at points in the plane, and cij is the Euclidean dis-
tance between points i and j. Problems 1, 2 and 3 are 50, 75
and 100 customer problems respectively. The data for these
probiems was randomly generated and is given in (2]. Problem
4 is a 150 customer problem produced by adding the custcmers
of problems 1 and 3 with the depot and vehicle capacities as

in problem 3. Problem 5 is a 199 customer preoblem produced by

adding the customers of problem 4 with the first 49 customers

4
of problem 2. Problems 6 to 10 are the same as problems 1 to §
with additional restrictions on the maximum allocwable route

[ 2

L—-—-——-—-—-—-J




Table 1 Summary of Problem Characteristics

n XK*

croblem n K* I aj z bk

iml x=1 °
T 50 5 37
2 75 10 .97
3 100 3 .93
4 150 - 12 .94
5 199 17 .95
6 50 € .81
7 75 12 .81
8 100 9 .83
9 150 15 .71
10 ‘ 199 19 .77
11 100 10 .91
12 100 10 .91




or each prerlem. The restrictions on routs times Zfor

crcblams 6 tc 10 respectively are 200, 160, 230, 200 and 200.
Travel times between customers are assumed to be egqual to the
distance between the customers. Additionally, an unlocading
time of 10 units is incurred for each customer stcp.

The introduction of a constraint on route time reguires
a ncdificaticn of our heuristic as given in the previcus secticn.
Anal~gous to the function f(yk) defined in section 2, we define
t(yz) to equal the travel time of an optimal tour of the customers

<

in N{v,) = {ilyjx = 1}. A linear approximation of t(yy) is

constructed using the method for arproximating travel cost

[¥e)

iven in section 3. The linear approximation of tly,) is
used to construct a linear constraint that approximates the
route time restriction. These linear route time constraints
are then added to the generalized assignment problem (1"},
(2), (3) and (4). An algorithm toc sclve this generalized
assignment problem with side constraints is described in [8].
This algorithm employs a cdualization of the side constraints.
Because the route time constraints are aporoximate, a firal
feasibility check is regquired.

Problems 1l and 12 are structured precblems in which custcmers
are grouped in clusters. These problems seem to resemble real

oroblems more closely than problems 1 to 10. The data for these

orchlems is given in [4].
A ccmparison of the five methods is reported in Table 2.
Results for ocur method were obtained hy wus; results for the !

other four methods are taken frem {4].




Tadble 3 prevides a cecmparisen of sclution guality and
running time for the five methods. In terms of solution guality,
the Fisher-Jaikumar generalized assignment methcd clearly
outperformed the other four. The generalized assignment method
found the best solution in 9 of the l2 problems anéd haé the
lowest average solution value over all 12 problems.

The closest competitor was the Christofides et al. tree
search method. This is a restricted branch and bound method
and is theoretically capable of solving the problem oﬁtimally
if the restrictions on branching and searching the tree are
removed. The gquality of the results depends on how much restric- q

tion is placed on the tree search. With increasing guality,

one suffers the progressive increase in computation times.
Besides, the form of this algorithm implies that computational
times will increase exponentially with the number of customers,
as can be seen in Table 1.

The Christofides, et al. two phase method is similar to
the method presented here in that both methods select seed
customers, cémpute insertion costs, and then assign customers
to trucks based on these costs. The Christofides et al.
two phase uses a heuristic to make this assignment, while the
Fisher-Jaikumar method optimally solves a generalized assign-
ment problem. If the insertion costs are reasonable approxi-
mations of the true costs, then the generalized assignment

method should perform uniformly better than the two phase

method. This is substantiated by the results. The two phase
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method oktains the best solution in only one of the twelve
problems and is 2.4% more expensive on average than the
generalized assignment method. In the two problems where the
two phase method outperforms the generalized assignment method,
we conjecture that the difference is probably due to a different
method of selecting the seed customers and if the same seed
customers and insertion costs are used, the generalized assign-
ment method should do better.

The version of Sweep implemented in {4] applies the
basic Sweep iteration described in section 2 for many different
starting rays. The soclution values reported are the best of
these numerous runs. The solution times are the sums of the
times for different séértinq fays. The Sweép method did
uniformly better than the Clarke and Wright method for the
random problems 1 to 10, but worse for the structured prob-
lems 11 and 12. Both methods were substantially poorer than
the generalized assignment method.

CPU times for the generalized assignment method (see
table 2) are smaller on average than all other methods except
Clarke and Wright. The Clarke and Wright times are only
slightly smaller, and its performance in terms of solution

gquality is much worse.
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We also ncote that Russell (19] has obtained solutions to
the first 3 oroblems with costs of 524, 854, and 833 resvectivelv.
However, the computational recguirements of his method are

prohibitive. The CPU times on an IBM 370/168 (a faster machine i

than the DEC 10) for these 3 problems were 15, 245 and 100
seconds respectively.
In conclusion, the Fisher-Jaikumar generalized assignment

method has demonstrated impressive computational performance

on a wide range of test problems.
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